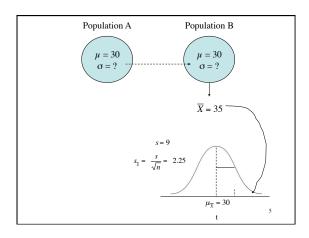
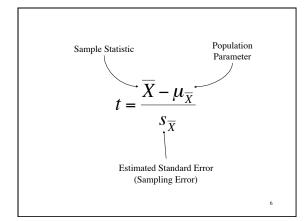
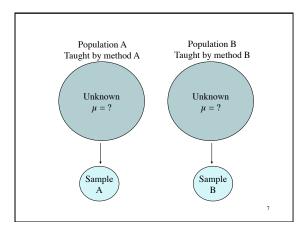
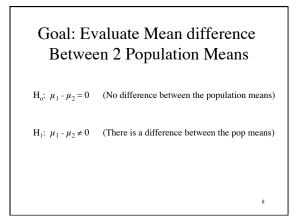


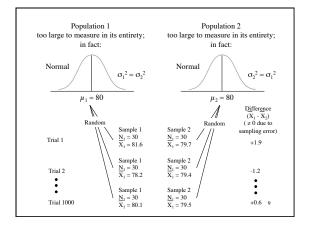
Independent-Measures Designs

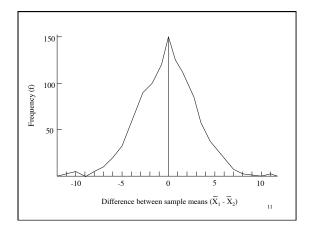

- The independent-measures hypothesis test allows researchers to evaluate the mean difference between two populations using the data from two separate samples.
- The identifying characteristic of the independentmeasures or between-subjects design is the existence of two separate or independent samples.
- Thus, an independent-measures design can be used to test for mean differences between two distinct populations (such as men versus women) or between two different treatment conditions (such as drug versus no-drug).

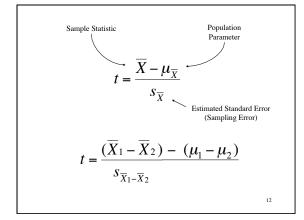






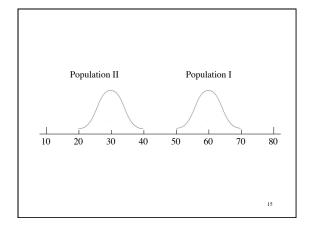




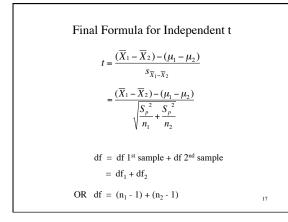


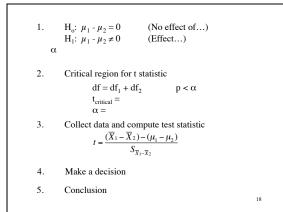
Difference Between Samples Means $(\overline{X}_1 - \overline{X}_2)$	Number of Samples	
Greater than +11.49	0 0	
+10.50 to +11.49	1	
+9.50 to +10.49	0	
+8.50 to +9.49	1	
+7.50 to +8.49	4	
+6.50 to +7.49	7	
+5.50 to +6.49	21	
+4.50 to +5.49	32	
+3.50 to +4.49	54	
+2.50 to +3.49	77	
+1.50 to +2.49	107	
+.50 to +1.49	122	
50 to +.49	153	
-1.50 to51	114	
-2.50 to -1.51	95	
-3.50 to -2.51	82	
-4.50 to -3.51	60	
-5.50 to -4.51	31	
-6.50 to -5.51	22	
-7.50 to -6.51	10	
-8.50 to -7.51	- 4	
-9.50 to -8.51	1	
-10.50 to -9.51	2	
Smaller than10.5		10
	Total 1000	10

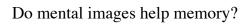




$$S_{\overline{X}} = \sqrt{\frac{s^2}{n}} \quad or \quad \frac{s}{\sqrt{n}}$$
$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

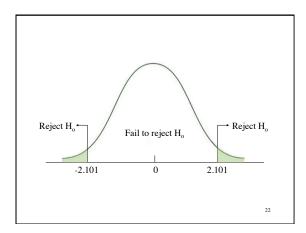





$$S_{\overline{x}_{1}-\overline{x}_{2}} = \sqrt{\frac{S_{p}^{2}}{n_{1}} + \frac{S_{p}^{2}}{n_{2}}}$$

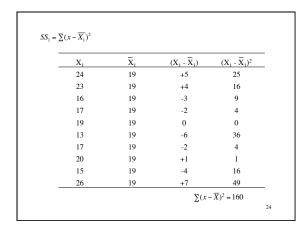
$$S_{p}^{2} = \frac{df_{1}s_{1}^{2} + df_{2}s_{2}^{2}}{df_{1} + df_{2}}$$
OR
$$S_{p}^{2} = \frac{SS_{1} + SS_{2}}{df_{1} + df_{2}}$$
16

19

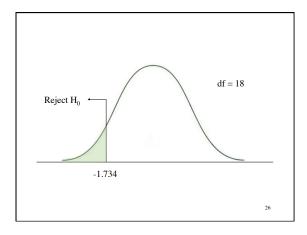

- 40 pairs of nouns - (dog / bicycle, lamp / piano, etc.)
- 2 groups (or samples)
 1. Memorization (control)
 - 2. Imagery (experimental)
- Subsequent memory test

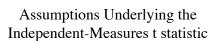
Group 1		Gro	up 2
(No images)		(Ima	ages)
24	13	18	31
23	17	19	29
16	20	23	26
17	15	29	21
19	26	30	24

Data	(Number o	f words rec	alled)
Group 1		Group 2	
(No images)		(Images)	
24	13	18	31
23	17	19	29
16	20	23	26
17	15	29	21
19	26	30	24
n =	n = 10		= 10
$\overline{\mathbf{X}} = 19$		$\overline{\mathbf{X}} = 25$	
SS	SS = 160		= 200

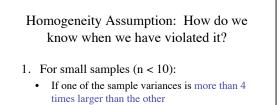


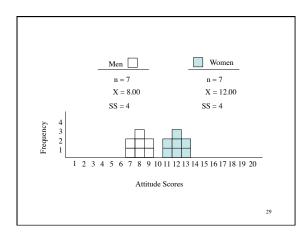
$$t = \frac{(\overline{X}_1 - \overline{X}_2) - (\mu_1 - \mu_2)}{s_{\overline{X}_1 - \overline{X}_2}}$$
$$S_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{s_p^2}{n_1} + \frac{s_p^2}{n_2}}$$



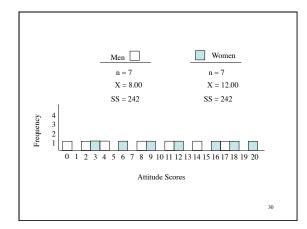


$SS_1 = \sum x^2 - \frac{(\sum x)}{n}$)2	
X1	X1 ²	
24	576	
23	529	
16	256	
17	289	
19	361	$\sum r^2 - \sum r^2 - \frac{(\sum x)^2}{2}$
13	169	$33_1 - 2x - \frac{n}{n}$
17	289	$SS_1 = \sum x^2 - \frac{(\sum x)^2}{n}$ = 3770 - $\frac{190^2}{10}$
20	400	10
15	225	= 3770 - 3610
26	676	= 5770 = 5010
$\sum x = 190$	$\Sigma x^2 = 3770$	= 160
		25




- 1. The observation within each sample must be independent
- 2. The two populations from which the samples come must be normal
- 3. The two populations from which the samples are selected must have equal variances <u>homogeneity of variance</u>

27




- 2. For larger samples:
 - If one of the sample variances is more than 2 times larger than the other

28

