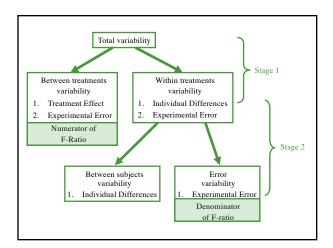
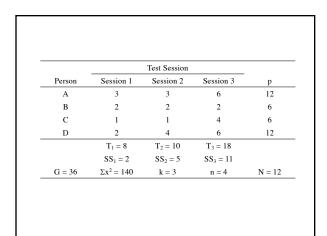
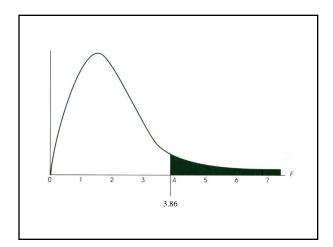

Chapter 13: Repeated-Measures Analysis of Variance

The Logical Background for a Repeated-Measures ANOVA

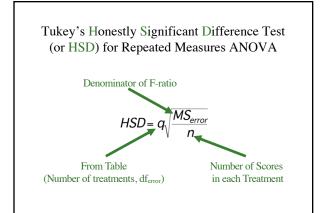

- Chapter 14 extends analysis of variance to research situations using repeated-measures (or related-samples) research designs.
- Much of the logic and many of the formulas for repeated-measures ANOVA are identical to the independent-measures analysis introduced in Chapter 13.
- However, the repeated-measures ANOVA includes a second stage of analysis in which variability due to **individual differences** is subtracted out of the error term.

The Logical Background for a Repeated-Measures ANOVA (cont.)


- The repeated-measures design eliminates individual differences from the between-treatments variability because the same subjects are used in every treatment condition.
- To balance the F-ratio the calculations require that individual differences also be eliminated from the denominator of the F-ratio.
- The result is a test statistic similar to the independent-measures F-ratio but with all individual differences removed.



Subject	Before Treatment	One Week Later	One Month Later	Six Months later	р
A	8	2	1	1	12
В	4	1	1	0	6
С	6	2	0	2	10
D	8	3	4	1	16
	T ₁ = 26	$T_2 = 8$	$T_3 = 6$	$T_4=4$	
	$SS_1 = 11$	$SS_2 = 2$	$SS_3 = 9$	$SS_4 = 2$	
	n = 4 k =	4 N = 16	G = 44	$\Sigma x^{2} = 222$	



Subject	Before Treatment	One Week Later	One Month Later	Six Months later	р
А	8	2	1	1	12
В	4	1	1	0	6
С	6	2	0	2	10
D	8	3	4	1	16
	T ₁ = 26	$T_2 = 8$	$T_3 = 6$	$T_4 = 4$	
	$SS_1 = 11$	$SS_2 = 2$	$SS_3 = 9$	$SS_4 = 2$	
	$n=4 \qquad k=4 \qquad N=16$		G = 44	$\Sigma x^2 = 222$	
	$\overline{X}_{1} = 6.5$	$\overline{X}_2 = 2.0$	$\overline{X}_3 = 1.5$	$\overline{X}_4 = 1.0$	

Advantages of Repeated Measures Design

- 1. Economical fewer SS required
- 2. More sensitive to treatment effect individual differences having been removed

Independent:

vs.

Repeated Measures:

F = ______

experimental error

Imagine: Treatment Effect = 10 units of variance Individual Differences = 1000 units of variance Experimental Error = 1 unit of variance

Disadvantages of Repeated Measures Designs:

- 1. Carry over effects (e.g. drug 1 vs. drug 2)
- 2. Progressive error (e.g. fatigue, general learning strategies, etc.)
- *Counterbalancing

Assumptions of the Repeated Measures ANOVA

- 1. Observations within each treatment condition must be independent
- 2. Population distribution within each treatment must be normal
- 3. Variances of the population distributions for each treatment must be equivalent (homogeneity of variance)
- 4. Homogeneity of covariance.