Chapter 4: Variability

Variability

• Provides a quantitative measure of the degree to which scores in a distribution are <u>spread out</u> or clustered together

Central Tendency and Variability

- Central tendency describes the central point of the distribution, and variability describes how the scores are scattered around that central point.
- Together, central tendency and variability are the two primary values that are used to describe a distribution of scores.

Variability

- Variability serves both as a descriptive measure and as an important component of most inferential statistics.
- As a descriptive statistic, variability measures the degree to which the scores are spread out or clustered together in a distribution.
- In the context of **inferential statistics**, variability provides a measure of how accurately any individual score or sample represents the entire population.

Variability (cont.)

- When the population variability is small, all of the scores are clustered close together and any individual score or sample will necessarily provide a good representation of the entire set.
- On the other hand, when variability is large and scores are widely spread, it is easy for one or two extreme scores to give a distorted picture of the general population.

Measuring Variability

- Variability can be measured with
 - the range
 - the interquartile range
 - the standard deviation/variance.
- In each case, variability is determined by measuring *distance*.

The Range

• The **range** is the total distance covered by the distribution, from the highest score to the lowest score (using the upper and lower real limits of the range).

Range

- URL x_{max} LRL x_{min}
 - e.g. 3, 7, 12, 8, 5, 10

The Interquartile Range

• The **interquartile range** is the distance covered by the middle 50% of the distribution (the difference between Q1 and Q3).

Scores

2, 3, 4, 4, 5, 5, 6, 6,

6, 7, 7, 8, 8, 9, 10, 11

x f 11 1	cf	ср	c%
11 1			270
	16	16/16	100%
10 1	15	15/16	93.75%
9 1	14	14/16	87.5%
8 2	13	13/16	81.25%
7 2	11	11/16	68.75%
6 3	9	9/16	56.25%
5 2	6	6/16	37.5%
4 2	4	4/16	25%
3 1	2	2/16	12.5%
2 1	1	1/16	6.25%
4 3 2	2 5 1 2 1	$ \begin{array}{ccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The Standard Deviation

• **Standard deviation** measures the **standard** (or average) distance between a score and the mean.

	v	(~	
<u> </u>	<u>x-µ</u>	(<u>x - µ)</u>	
1	1 - 2 = -1	1	$\sum x = 8$
0	0 - 2 = -2	4	u = 2
6	6 - 2 = +4	16	1
1	1 - 2 = -1	1	
		$22 = \sum_{n=1}^{\infty} (n^{n})^{n}$	$(x - \mu)^2 = SS$
		or	
x	<u>x²</u>	$\nabla \mathbf{x} = 8$	$SS = \sum x^2 - \frac{(\sum x)^2}{N}$
1	1	$\sum x = 0$	8 ²
0	0	$\sum x^2 = 38$	$= 38 - \frac{-}{4}$
6	36		20 16
1	1		= 38 - 16
			= 22

Variance and Standard Deviation
for a population of scores
$$\sigma^{2} = \frac{SS}{N} = \frac{\sum (x - \mu)^{2}}{N}$$
$$\sigma = \sqrt{\frac{SS}{N}} = \sqrt{\frac{\sum (x - \mu)^{2}}{N}}$$

7

Variance and Standard Deviation for a <u>Sample</u> Used to <u>Estimate</u> the Population Value Variance: $s^{2} = \frac{SS}{n-1} = \frac{\sum(x-\bar{x})^{2}}{n-1}$ $s = \sqrt{\frac{SS}{n-1}} = \sqrt{\frac{SS}{n-1}}$

$$\sigma^{2} = \frac{SS}{N} = \frac{\sum (x-\mu)^{2}}{N}$$

$$\sigma = \sqrt{\frac{SS}{N}} = \sqrt{\frac{\sum (x-\mu)^{2}}{N}}$$

$$s^{2} = \frac{SS}{n-1} = \frac{\sum (x-\overline{X})^{2}}{n-1}$$

$$s = \sqrt{\frac{SS}{n-1}} = \sqrt{\frac{\sum (x-\overline{X})^{2}}{n-1}}$$

Example

- Randomly select a score from a population x = 47
- What value would you predict for the population mean?

if $\sigma = 4$

if $\sigma = 20$

Transformations of Scale

- 1. Adding a constant to each score will not change the standard deviation
- 2. Multiplying each score by a constant causes the standard deviation to be multiplied by the same constant

Comparing Measures of Variability

- Two considerations determine the value of any statistical measurement:
- 1. The measures should provide a stable and reliable description of the scores. It should not be greatly affected by minor details in the set of data.
- 2. The measure should have a consistent and predictable relationship with other statistical measurements.

Factors that Affect Variability

- 1. Extreme scores
- 2. Sample size
- 3. Stability under sampling
- 4. Open-ended distributions

Relationship with Other Statistical Measures

- <u>Variance and standard deviation</u> are mathematically related to the <u>mean</u>. They are computed from the squared deviation scores (squared distance of each score from the mean).
- <u>Median</u> and <u>semi-interquartile range</u> are both based on percentiles and therefore are used together. When the median is used to report central tendency, semiinterquartile range is often used to report variability.
- <u>Range</u> has no direct relationship to any other statistical measure.

Sample variability and degrees of freedom

The Mean and Standard Deviation as Descriptive Statistics

- If you are given numerical values for the mean and the standard deviation, you should be able to construct a visual image (or a sketch) of the distribution of scores.
- As a general rule, about 70% of the scores will be within one standard deviation of the mean, and about 95% of the scores will be within a distance of two standard deviations of the mean.

	Easy	Difficu
Female	1.45	8.36
Male	3.83	14.77

When we report descriptive statistics for a sample, we should report a measure of central tendency and a measure of variability.

Mean num difficult tas	ber of errors ks for males	s on easy v s vs. female
	Easy	Difficult
Femal	e M=1.45	M = 8.36
	SD = .92	SD = 2.16
Male	M =3.83	M =14.77
	SD =1.24	SD = 3.45

