

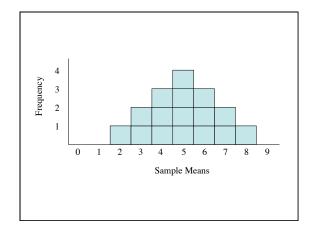
Distribution of Sample Means

• The distribution of sample means is the collection of sample means for <u>all</u> the possible random samples of a particular size **n** that can be obtained from a population.

Sampling Distribution

• A <u>sampling distribution</u> is a distribution of statistics obtained by selecting all the possible sample of a specific size from a population.

	Sc	ores	Sample Mean
Sample	First	Second	x
1	2	2	2
2	2	4	3
3	2	6	4
4	2	8	5
5	4	2	3
6	4	4	4
7	4	6	5
8	4	8	6
9	6	2	4
10	6	4	5
11	6	6	6
12	6	8	7
13	8	2	5
14	8	4	6
15	8	6	7
16	8	8	8

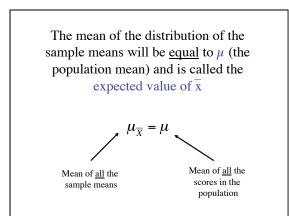


Central Limit Theorem

• For any population with mean μ and standard deviation σ , the distribution of sample means for sample **n** will approach a normal distribution with a mean of μ and a standard deviation $\frac{\sigma}{\sqrt{n}}$ as **n** approaches infinity.

The distribution of sample means will be almost perfectly normal if either of the following is true:

- 1. The population from which the samples are selected is a normal distribution.
- 2. The Number of scores (n) in each sample is relatively large, around 30 or more.



The <u>standard deviation</u> of the distribution of sample means is called the :

Standard error of \overline{X}

Standard error = $\sigma_{\overline{X}}$ (standard distance between \overline{X} and μ)

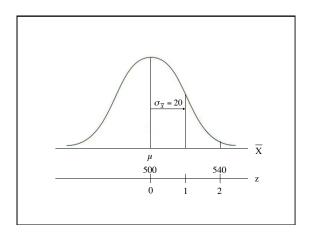
Standard error determined by 2 characteristics:

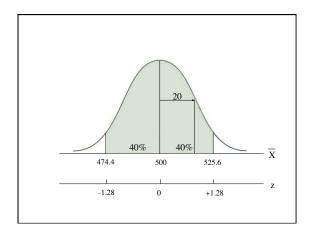
- 1. Variability of the population from which the sample came
- 2. The size of the sample

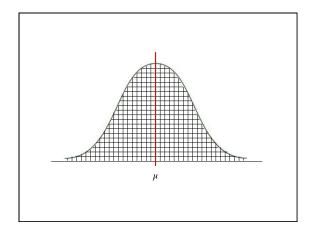
$$\sigma_{\overline{X}} = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$$

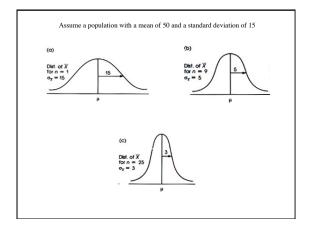
Law of Large Numbers

• The larger the sample size (n), the more probable it is that the sample mean will be close to the population mean.



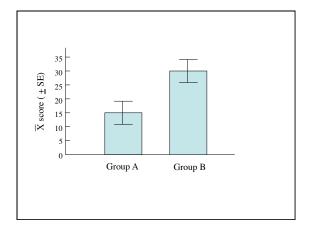


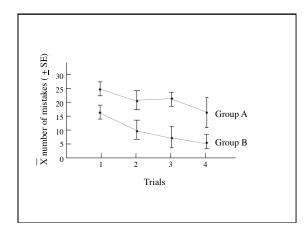


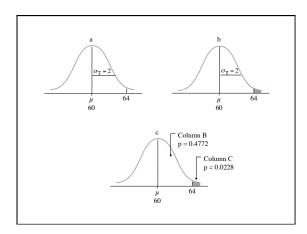


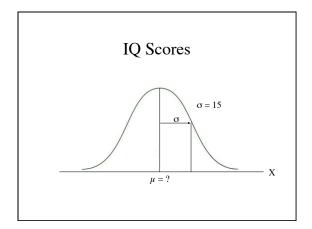
Group	n	Mean	SE
Control	17	32.23	2.31
Experimental	15	45.17	2.78

E.









Given a population of test scores that is <u>normally</u> distributed with $\mu = 60$ and $\sigma = 8$

- I randomly select a test score. What is the probability that the score will be more than 16 points away from the mean?
 - (Hint : What proportion of test scores are > 76 or < 44 ?)